CURRENT INSIGHTS INTO THE GENETIC DETERMINANTS OF TRAUMATIC COMPLICATIONS AND BONE-TISSUE REGENERATION
DOI:
https://doi.org/10.35220/2523-420X/2025.3.23Keywords:
RANKL; VEGF; TNF-α; IL-6; bone tissue; regeneration; dentistry; traumatic complications; molecular geneticsAbstract
Traumatic injuries of bone tissue in adults result from a multifactorial interaction of mechanical, inflammatory, and genetically determined factors. Imbalance within the RANKL / RANK / OPG axis, hyper-expression of the pro- inflammatory cytokines TNF-α and IL-6, and insufficient VEGF-mediated angiogenesis provoke pathological resorption, delayed remodelling, and the development of post-traumatic complications. Although anti-resorptive antibodies, selective oestrogen-receptor modulators, and tissue-engineering approaches are available, unified personalised protocols for prevention and treatment remain under-developed. The purpose of the study was to systematise contemporary clinical and experimental evidence concerning the role of genetic determinants (TNFSF11, TNFRSF11A/B, VEGFA, TNF, IL6) in the emergence of traumatic complications and in bone-tissue regeneration, with the aim of identifying effective and safe molecular therapeutic targets. Materials and methods. A targeted narrative review (2005–2025) was conducted in accordance with PRISMA-ScR. Searches were performed in PubMed, Scopus, Web of Science, Embase, and Google Scholar. Sixty-five sources met the inclusion criteria (fracture models, genetic association studies, clinical trials of anti-resorptive and pro-angiogenic agents; adult population ≥ 18 years). Study design, molecular interventions, and morphometric and clinical end-points (bone mineral density, incidence of delayed union, rate of defect closure) were assessed. Research results. In a rat model of osteoporotic fractures, raloxifene increased bone mineral density and OPG expression 1.4-fold while reducing RANKL and RANK levels 1.3-fold (P < 0.05), achieving complete radiological union after 4 weeks. In rabbits with mandibular bone defects, implantation of a PEK-BBC/VEGF composite promoted mature trabecular formation and elevated VEGF expression 2.8-fold versus controls (P < 0.01), with 75 % defect closure by week16. The TNFSF11*G/G and TNF-308A genotypes were associated with a two-fold higher risk of delayed union, whereas carriers of VEGFA-936C exhibited accelerated osteogenesis. TNF-α blockers (infliximab, adalimumab) reduced the rate of periprosthetic osteolysis by 28 % and the frequency of revision surgery in patients with rheumatoid arthritis (P < 0.05). Conclusions. Genetic stratification of patients according to TNFSF11, TNFRSF11A/B, VEGFA, TNF, and IL6 polymorphisms, combined with targeted anti-resorptive, anti-inflammatory, and pro-angiogenic therapy, minimises the risk of post-traumatic complications and optimises reparative osteogenesis.Further prospective randomised studies are required to standardise personalised protocols and to evaluate the long-term safety of multi-component approaches.
References
Epsley, S., Tadros, S., Farid, A., Kargilis, D., Mehta, S., & Rajapakse, C.S. (2021). The Effect of Inflammation on Bone. Front Physiol, 1151-1799. DOI:10.3389/ fphys.2020.511799
Lu, N., & Malemud, C. J. (2019). Extracellular sig- nal‐regulated kinase: A regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. International Journal of Molecular Sciences, 20(15), 3792–3798.
Maruyama, M., Rhee, C., Utsunomiya, T., Zhang, N., Ueno, M., Yao, Z., & Goodman, S.B. (2020). Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne), 386. DOI:10.3389/ fendo.2020.00386.
Wang, T., & He, C. (2020). TNF-α and IL-6: The link between immune and bone system. Current Drug Targets, 21(3), 213–227. DOI:10.2174/13894501206661908 21161259.
Wang, Z.W., Chen, L., Hao, X.R., Qu, Z.A., Huang, S.B., M,a X.J., Wang, J.C., & Wang, W.M. (2019). Elevated levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and vascular endothelial growth factor in patients with knee articular cartilage injury. World J Clin Cases, 7(11), 1262-1269. DOI:10.12998/wjcc.v7.i11.1262.
Sahu, N., Viljoen, H. J., & Subramanian, A. (2019). Continuous low-intensity ultrasound attenuates IL-6 and TNF-α-induced catabolic effects and repairs chondral fissures in bovine osteochondral explants. BMC Musculoskeletal Disorders, 20, 193–200. DOI:10.1186/s12891-019-2566-4.
Terkawi, M.A., Matsumae, G., Shimizu, T., Taka- hashi, D., Kadoya, K., & Iwasaki, N. (2022). Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci, 23(3), 1786–1792. DOI:10.3390/ijms23031786.
Sadek, K.M., El Moshy, S., Radwan, I.A., Rady, D., Abbass, M.M.S., El-Rashidy, A.A., Dörfer, C.E., Fawzy, & El-Sayed, K.M. (2023). Molecular Basis beyond Inter- related Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci, 24(5), 4599. DOI:10.3390/ijms24054599.
Xie, Y., Xiao, S., Huang, L., Guo, J., Bai, M., Gao, Y., Zhou, H., Qiu, L., Cheng, C., & Han, X. (2023). Cascade and Ultrafast Artificial Antioxidases Alleviate Inflammation and Bone Resorption in Periodontitis. ACS Nano, 17(15), 15097-15112. DOI:10.1021/acsnano.3c04328.
Doi, K., Murata, K., Ito, S., Suzuki, A., Terao, C. & et al. (2022). Role of lysine-specific demethylase 1 in met- abolically integrating osteoclast differentiation and inflammatory bone resorption through hypoxia-inducible factor 1α and E2F1. Arthritis & Rheumatology, 74(6), 948–960. DOI:10.1002/art.42074
Jiang, M., Shang, Z., Zhang, T., Yin, X., Liang, X., & Sun, H. (2022). Study on the role of pyroptosis in bone resorption induced by occlusal trauma with or without peri- odontitis. J Periodontal Res, 57(3), 448-460. DOI:10.1111/ jre.12974.
Ono, T., Hayashi, M., Sasaki, F., & Nakashima, T. (2020). RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen, 40, 2. DOI:10.1186/s41232-019-0111-3.
Nakai, Y., Okamoto, K., Terashima, A., Ehata, S., Nishida, J., Imamura, T., Ono, T., & Takayanagi, H. (2019). Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Res, 7, 1. DOI:10.1038/s41413-018-0036-5.
Asano, T., Okamoto, K., Nakai, Y., Tsut- sumi, M., Muro, R., & et al. (2019). Soluble RANKL is physiologically dispensable but accelerates tumour metas- tasis to bone. Nat Metab, 1(9), 868-875. DOI:10.1038/s42255-019-0104-1.
Compston, J. E., McClung, M. R., & Leslie, W. D. (2019). Osteoporosis. Lancet, 393, 364–376. DOI:10.1016/S0140-6736(18)32112-3
Takeuchi, T., Tanaka, Y., Soen, S., Yamanaka, H., Yoneda, T., & et al. (2019). Effects of the anti-RANKL antibody denosumab on joint structural damage in patients with rheumatoid arthritis treated with conventional synthetic disease-modifying antirheumatic drugs (DESIR- ABLE study): a randomised, double-blind, placebo-controlled phase 3 trial. Ann Rheum Dis. 78(7), 899-907. DOI:10.1136/annrheumdis-2018-214827.
Tanaka, S. (2019). RANKL is a therapeutic target of bone destruction in rheumatoid arthritis. F1000Research, 8, 110–118. DOI:10.12688/f1000research.17296.1.
Tsukasaki, M., & Takayanagi, H. (2019). Osteoimmunology: Evolving concepts in bone–immune interac- tions in health and disease. Nature Reviews Immunology, 19(10), 626–642. DOI:10.1038/s41577-019-0178-8
Penna, S., Capo, V., Palagano, E., Sobacchi, C., & Villa, A. (2019). One Disease, Many Genes: Implications for the Treatment of Osteopetroses. Front Endocrinol (Lausanne),10, 85. DOI:10.3389/fendo.2019.00085.
Camara, A., Cordeiro, O.G., Alloush, F., Sponsel, J., Chypre, M., & et al. (2019). Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche. Immunity, 50(6), 1467-1481.e6. DOI:10.1016/j.immuni.2019.05.008.
Panda, S. K., & Colonna, M. (2019). Innate lymphoid cells in mucosal immunity. Frontiers in Immunology, 10, 861–881. DOI:10.3389/fimmu.2019.00861
Peters, S., Clézardin, P., Márquez-Rodas, I., Nie- pel, D., & Gedye, C. (2019). The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin Transl Onco, 21(8), 977-991. DOI:10.1007/s12094-018-02023-5.
Raje, N. S., Bhatta, S., & Terpos, E. (2019). Role of the RANK/RANKL pathway in multiple myeloma. Clinical Cancer Research, 25, 12–20. DOI:10.1158/1078-0432. CCR-18-1537.
Rachner, T.D., Kasimir-Bauer, S., Göbel, A., Erdmann, K., Hoffmann, O. & et al. (2019). Prognostic Value of RANKL/OPG Serum Levels and Disseminated Tumor Cells in Nonmetastatic Breast Cancer. Clin Cancer Res, 25(4), 1369-1378. DOI:10.1158/1078-0432.CCR- 18-2482. 1369–1378.
Sekiguchi, K., Ito, Y., Hattori, K., Inoue, T., Hosono, K. & et al. (2019). VEGF Receptor 1-Express- ing Macrophages Recruited from Bone Marrow Enhances Angiogenesis in Endometrial Tissues. Sci Rep, 9(1), 7037. DOI:10.1038/s41598-019-43185-8.
Dashtimoghadam, E., Fahimipour, F., Tongas, N., & Tayebi, L. (2020). Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Sci Rep, 10(1), 11764. DOI:10.1038/ s41598-020-68221-w.
Geng, Y., Duan, H., Xu, L., Witman, N., & Yan, B. (2021). BMP-2 and VEGF-A modRNAs in collagen scaf- fold synergistically drive bone repair through osteogenic and angiogenic pathways. Commun Biol, 4(1), 82. DOI:10.1038/s42003-020-01606-9.
Lee, H-P., & et al. (2020). Soya-cerebroside inhibits VEGF-facilitated angiogenesis in endothelial progenitor cells. Food and Agricultural Immunology, 31(1), 193–204.
Liu, K., Meng, C.X., Lv, Z.Y., Zhang, Y.J., & Li, J. (2020). Enhancement of BMP-2 and VEGF carried by mineralized collagen for mandibular bone regeneration. Regen Biomater, 7(4), 435-440. DOI:10.1093/rb/rbaa022.
Yu, H., Zeng, X., Deng, C., Shi, C., Ai, J., & Leng, W. (2018). Exogenous VEGF introduced by bioceramic composite materials promotes the restoration of bone defect in rabbits. Biomed Pharmacother, 98, 325-332. DOI:10.1016/j.biopha.2017.12.075.
Sharifi, M. (2022). The role of tumor necrosis fac- tor-alpha (TNF-α) in the pathogenesis of oral diseases. Journal of Dentistry and Oral Health, 9, 1–4.
Lechner, J., Rudi, T., & Von Baehr, V. (2018). Oste- oimmunology of tumor necrosis factor-alpha, IL-6, and RANTES/CCL5: A review of known and poorly understood inflammatory patterns in osteonecrosis. Clinical, Cosmetic and Investigational Dentistry, 15, 251–262. DOI:10.2147/CCIDE.S184498.
Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in inflammatory disease. International Journal of Molecular Sciences, 20(23), 6008–6015.
Holbrook, J., Lara-Reyna, S., Jarosz-Griffiths, H., & McDermott, M. (2019). Tumour necrosis factor signalling in health and disease. F1000Res, 8, F1000 Faculty Rev-111. DOI:10.12688/f1000research.17023.1.
Sulijaya, B., Takahashi, N., & Yamazaki, K. (2019). Host modulation therapy using anti-inflammatory and antioxidant agents in periodontitis: A review to a clinical translation. Archives of Oral Biology, 105, 72–80. DOI:10.1016/j.archoralbio.2019.07.002.
Hoare, A., Soto, C., Rojas-Celis, V., & Bravo, D. (2019) Chronic Inflammation as a Link between Periodontitis and Carcinogenesis. Mediators Inflamm, 2019, 1029857. DOI:10.1155/2019/1029857.
Melsheimer, R., Geldhof, A., Apaolaza, I., & Schaible, T. (2019). Remicade® (infliximab): 20 years of contributions to science and medicine. Biologics, 13, 139-178. DOI:10.2147/BTT.S207246
Ohno, S., & et al. (2019). Safety and efficacy of infliximab in the treatment of refractory uveoretinitis in Behçet’s disease: A large-scale, long-term post-marketing surveillance in Japan. Arthritis Research & Therapy, 21, 2–11.
Alqranei, M. S., & Chellaiah, M. A. (2020). Oste- oclastogenesis in periodontal diseases: Possible mediators and mechanisms. Journal of Oral Biosciences, 62(2), 123–130. DOI:10.1016/j.job.2020.02.002.
Hu, Y., Huang, Z., Yang, S., Chen, X., Su, W., & Liang, D. (2020). Effectiveness and Safety of Anti-Tumor Necrosis Factor-Alpha Agents Treatment in Behcets’ Disease-Associated Uveitis: A Systematic Review and Meta-Analysis. Front Pharmacol, 11, 941. DOI:10.3389/ fphar.2020.00941.
Tenkumo, T., Rojas-Sánchez, L., Vanegas, Sáenz, J.R., Ogawa, T., Miyashita, M. & et al. (2020). Reduction of inflammation in a chronic periodontitis model in rats by TNF-α gene silencing with a topically applied siRNA-loaded calcium phosphate paste. Acta Biomater, 105, 263-279. DOI:10.1016/j.actbio.2020.01.031.
Shen, C., Ye, W., Gong, L., Lv, K., Gao, B., & Yao, H. (2021). Serum interleukin-6, interleukin-17A, and tumor necrosis factor-alpha in patients with recurrent aphthous stomatitis. J Oral Pathol Med, 50(4), 418-423. DOI:10.1111/jop.13158.
Garcia-Montoya, L., & Emery, P. (2021). Disease modification in ankylosing spondylitis with TNF inhibi- tors: Spotlight on early phase clinical trials. Expert Opinion on Investigational Drugs, 30, 1109–1124. DOI:10.108 0/13543784.2021.2010187.
Akagi, T., Mukai, T., Mito, T., Kawahara, K., & Tsuji, S. (2020). Effect of Angiotensin II on Bone Erosion and Systemic Bone Loss in Mice with Tumor Necrosis Factor-Mediated Arthritis. Int J Mol Sci, 21(11), 4145. DOI:10.3390/ijms21114145.
Laha, D., Grant, R., Mishra, P., & Nilubol, N. (2021). The Role of Tumor Necrosis Factor in Manipulating the Immunological Response of Tumor Microenvironment. Front Immunol, 12, 656908. DOI:10.3389/fimmu.2021.656908.
Liu, W., Wu, K., & Wu, W. (2022). Effect of microRNA-138 on tumor necrosis factor-alpha-induced suppression of osteogenic differentiation of dental pulp stem cells and underlying mechanism. BioMed Research International, 2022, 723–732. DOI:10.1155/2022/7230167
Sethi, J. K., & Hotamisligil, G. S. (2021). Metabolic messengers: Tumour necrosis factor. Nature Metabolism, 3(10), 1302–1312. DOI:10.1038/s42255-021-00470-z.
Takeuchi, T., Yoshida, H., & Tanaka, S. (2021). Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmunity Reviews, 20(9), 102–114. DOI:10.1016/j.autrev.2021.102884.
Harmer, D., Falank, C., & Reagan, M. R. (2019). Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Frontiers in Endocrinology, 9, 788–796. DOI:10.3389/fendo.2018.00788.
Favalli, E. G. (2020). Understanding the role of interleukin-6 (IL-6) in the joint and beyond: A compre- hensive review of IL-6 inhibition for the management of rheumatoid arthritis. Rheumatology and Therapy, 7(3), 473–516. DOI:10.1007/s40744-020-00219-2.
Mishra, D., Richard, J.E., Maric, I., Porteiro, B., Häring, M. & et al. (2019). Parabrachial Interleukin-6 Reduces Body Weight and Food Intake and Increases Thermogenesis to Regulate Energy Metabolism. Cell Rep, 26(11), 3011-3026.e5. DOI:10.1016/j.celrep.2019.02.044.
Wiegertjes, R., van de Loo, F.A.J., Blaney, & Davidson, E.N. (2020). A roadmap to target interleu- kin-6 in osteoarthritis. Rheumatology (Oxford), 59(10), 2681-2694. DOI:10.1093/rheumatology/keaa248
Kang, S., Tanaka, T., Narazaki, M., & Kishimoto, T. (2019). Targeting Interleukin-6 Signaling in Clinic. Immunity, 50(4), 1007-1023. DOI:10.1016/j.immuni.2019.03.026.
Wiegertjes, R., van Caam, A., van Beuningen, H., Koenders, M., van Lent, P. & et al. (2019). TGF-β dampens IL-6 signaling in articular chondrocytes by decreasing IL-6 receptor expression. Osteoarthritis Cartilage, 27(8), 1197-1207. DOI:10.1016/j.joca.2019.04.014.
Reeh, H., Rudolph, N., Billing, U., Christen, H., Streif, S. & et al. (2019). Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: fusing experimental insights and dynamic modelling. Cell Commun Signal, 17(1), 46. DOI:10.1186/s12964-019-0356-0.
Lehrskov, L. L., & Christensen, R. H. (2019). The role of interleukin-6 in glucose homeostasis and lipid metabolism. Seminars in Immunopathology, 41, 491–499. DOI:10.1007/s00281-019-00747-2
McGregor, N.E., Murat, M., Elango, J., Poul- ton, I.J., Walker, E.C., & et al. (2019). IL-6 exhibits both cisand trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. J Biol Chem, 294(19), 7850-7863. DOI:10.1074/jbc.RA119.008074.
Kamiya, N., Kuroyanagi, G., Aruwajoye, O., & Kim, H.K.W. (2019). IL6 receptor blockade preserves articular cartilage and increases bone volume following ischemic osteonecrosis in immature mice. Osteoarthritis Cartilage, 27(2), 326-335. DOI:10.1016/j.joca.2018.10.010.
Hirano, T. (2021). IL-6 in inflammation, autoim- munity and cancer. International Immunology, 33(3), 127–148. DOI:10.1093/intimm/dxaa078.
Matsugaki, A., Matsumoto, S., & Nakano, T. (2020). A novel role of interleukin-6 as a regulatory factor of inflammation-associated deterioration in osteoblast arrangement. International Journal of Molecular Sciences, 21(18), 6659–6670. DOI:10.3390/ijms21186659.
Lorenzo, J. A. (2020). The role of interleukin-6 in bone. Journal of the Endocrine Society, 4(10), 112–120. DOI:10.1210/jendso/bvaa112
Rose-John, S. (2022). Local and systemic effects of interleukin-6 (IL-6) in inflammation and cancer. FEBS Letters, 596(5), 557–566. DOI:10.1002/1873-3468.14220.
Pandolfi, F., Franza, L., Carusi, V., Altamura, S., Andriollo, G., & Nucera, E. (2020). Interleukin-6 in Rheumatoid Arthritis. Int J Mol Sci, 21(15), 5238. DOI:10.3390/ ijms21155238.
Murakami, M., Kamimura, D., & Hirano, T. (2019). Pleiotropy and specificity: Insights from the interleukin-6 family of cytokines. Immunity, 50(4), 812–831. DOI:10.1016/j.immuni.2019.03.027
McElvaney, O.J., Curley, G.F., Rose-John, S., & McElvaney, N.G. (2021). Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respir Med, 9(6), 643-654. DOI:10.1016/S2213-2600(21)00103-X.






